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SUMMARY

A mcMf ied fomn of Donnellre equation for the equilibrium of
thin cylindrical.shells is derived which Is equivalent to Ikmnellts
equation but has certain advantages fn physical interpretation and
in ease of solution, particularly in the case of shells having
clamped edges. The solution of this mciiifiedequation by means of
trigonometric series and its application to a number of problems
concerned with the shear buckling stresses of cylindrical shells
are discussed. The question of imp13eit boundary conditions also
is considered.

s

INl?RODUCL’ION
.4

During a general theoretical investigation of the stabi~ity
of curved sheet under Uxad, a meth~ of “analysiswas developed
which appears to be simpler to apply than those in general.use.
The development of thfs method is presented in tyo parts, of which
reference 1 is the first w.3 the present paper the second. The
specific problems solved by this new method are treated in detail in
other Iapers. (See, fohexsmple, references 2 to 7.)

m

.=

In refe~ence l.the stability of a stressed cylindrical.shell
was analyzed in terms of Ikmnellts equation, a pa~tial differential
equation.for the radial displacement w, which takes into account
the effects of the axial dis~lacement u and the circumferential
displacement v. Reference 1 shows the manner in which this equation ●

can be used to obtain relatively easy soiutions to a number of
problems concerning the stability of cylindrical shells with simply
supported edges. The results of the solution of this equatian were
shown to take cm a simple form by the use of the parameter k
(similar to the buckling-stress coefficients for flat plates) to
represent the state of stress in the shell and the parameter Z
to represent the &lmensicms of the shell, where Z is defined by
the following equations:
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I

For a cylinder of length L

z= eippz
rt

and for a curved yanel of width .%

‘=$-

where

r radius of curvature

* thickness of shell

and

P Poissmts ratio for material

The accuracy of Donnellts equation was established by comparisons
of the results found by Its use with the results found by other
methods and by experiment,

In the simplest method that has been fourx!iforsolving
Donnel.ltsequation, the radial displacement w is represented
by a trigonometric series expansion. This method can be used to
great advantage for cylinders or curved panels with simply supported
edges but leads to incorrect results when applied uncritically
to cylinders or panels with clamped edges.

.i
n

*

In the present paper an equation is derived which is equivalent
to Donnell~e equaticm but is adapted to solution for clamped as
well as simply supported edges by means of trigonometric seriee.
This modified equation retains the advantages of Donnellfs equation
In ease of soluticm and simplicity of results. The solution of the
modified equation by means of the Galerkin method is explained, and
the results obtained by this approach in a number of problems
concerned with the shew buckling stresses of cylindrical shells
are given in grayhical form and discussed briefly. Boundary condlticma
implied by the method of solution of’the modified equation are
also discussed. k ,.

.
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ISYMBOLS

length of curved panel (longer

width of curved panel (shorter

dfmensim )

dtmension)

deflection coefficients in trigonometric series

(

.-
T@

shear-stress coefficient — for cylinder;~2

Ti%2

)
— for curved panel
# .,

di.rect-exial-e+reescoel?flcient
(

uxtL2
—— for cylinder;
~2

axtb2 )— for curved psmel
~2

/

(

2 —

circumferential-stress coefficient
%+ for cylinder;
-M-.oytb~

;)
for curved panel~2

ltiteralpressure

radius of cuzzvatureof cylindrical shell

thfckriessof cylhmlrical shell

displacement in axial (x-} direction & point on shell -
median surface

displacement in circumferential (y-) direction of Point

on shell median surface

displacement in radiel dlrect30n of point on shell -
~dlan swface; positive outward

exial coordinate

circumferential coordinate

integers

plate flexural ()
E-$

stiffness per unit length
12(1 - @)
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Youngrs modulus of elasticity
.

Mryrs stress function for med,ian+mrface stresses produced

by buckle deformation
(

a%
—, stress In exial direction;
?@

~2F a+—3 strese in circumferential direction; - —
hxz \

~ 3Y, sheex

)simem

L length of cylinder

QS QJ., ~ mathematical operators

R~ shear-stre~s ratio; ratio of shear stress present to
oritical shear stress when no other stress is acting

Rx axial-compressive-stressratio; ratio of direct axial
stress present to critical ccwnpressivestress when
no other stress 3s acttng

curvature perameter (i
L2---

- ~2 for cylinder;

$F” “ )
2 for curved panel or long curved strip

z

half wave length of
in cylinders and

Poissonrs ratio for

buokles; measured circumferentially
axially in long curved strips

material

applied sxial stress, positive for compression

applied circunterential

applied shear stress

critical sheer stress

operator @&+$$--

stress, positive for ccanpreesion

1- .
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V8

V-4 inverse operator defined

V+%tr) = V%J+f) =

by eqwitions

f

TH130RY

Derivation of Modified Equation

The equation of equilibrium for a flat plate may be written

=0 (1)

where p is lateral pressure. (This.equaticm 3s equivalent to
equaticm (197) of reference 8.)

For a cylindrically cumed plate having a radius of curvature r,
the following pair of simultaneous equations of equilibrium may be
written (as a generalization of equations (11) and (10) of reference 9):

where F is Airy?s stress

v4-’F_E?%=o
rax2

(3)

function for the median-surface stresses
produced by the buckle defamation (reference 10). Equation (2)

differs from equation (1) only in the addition of the term A*
r&2’

d which expresses the.effect of the curvature. Equation (3) shows
that, unlike flat plates, cylindrical shells experience stretching
of the median surface when originally straight Hnes in the surface.

-’b
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are bent slightly.
and (3) by suitable
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Elimination of F between equations (2)
differentiations and additions gives the

following Bingle equation in w for the equilibrium of cylindrical
shells:

‘v8w+%9+’v4(’*’2’~Joy5)’v4p=o‘4)
Equation (4), whtch was first derived by Donnell (reference 11),
was treated in reference 1.

An alternative method for obtaining a single equation in w
for the equilibriumof a cylindrical shell is to solve equation (3)
for F and substitute the result into equation (2). This procedure
can readily be carried out in the following manner. Differentiation
of equation (3) twice with respect to x gives ,

~2F ieThe symbolic solution of equation (5) for —
&2

(5)

Substitution of this result into equation (2) gives

Equation (6) is simyly equation (4) modified by multiplication by
the operator v~. m the present paper, equations (4) and (6)
axe referred to as Donnellts equation and the modified equation,
respectively.

,
Advantages of Modified Equation

One of the quick~st and most convenient methods f’orobtainin6
soluticms of flat-plate buckling problems to any desired degree of

,7
,. .
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approximation uses a Fourier series type of expansion for the deflection
swfaoe w. Both Ibmel.1’s equation and the modified equati~ can
be solved by this method in the ease of buckling problems involving
ourvedplateshaving simply supported edges.

As mentioned in the *’Introduction,” however, Kmnell’s equation
is not well adapted to solution by Fourier series of problems
involvi~ the stability of shells with clamped edges. The cause of
the trouble appears to be that the calculation of some of the high-
order derivatives found in Ibnnell.Isequation sometimes leads to
divergent trigonometric series when the edges are clamped. The
nmlified equation, however, is applicable to clamped-edge problems
as well as to problems involving simply supported edges beoause
lower-order derivatives are involved.

In addition to its advaa’~ges in the solution of problems
involving shells with clamped edges, equation (6) has the adildtionsl
advantage that each term has a definite physical significance:
The first term gives the restaring force per unit erea of the deflected
surface due to bending end.twistimg stiffnesses; the second term
gives the restoring force per unit area due to stretching stiffness;
and the remaining terns gfve the deflecting forces per unit area

. due to appl.ledloads. Because of these advantages, the modified
equation was adopted for general.use in references 2 to 7.

. Both Ikmnell’s equation and the mcdlfied equation result In
. the same critical stresses for simply supported cylindrical shells,

and the two methods require essentially equivalent mathematical
processes. (See appendix.) The characteristics of soluticmsby
means of Donnellts equation in the case of simply supported shells
(reference 1) - namely, the theoretical cylinder parameters, the
simplicity of calculations and results, and the implied bounda~
conditions on u and v - are characteristics, *o, of solutions
by mesns of the modified equation. The same characteristics, except
for a chenge in the implied boundary conditions on u snd v, also
apply to solutions of clamped-edge shell problems by means of the
nmdified equation. This c-e is discussed in the sectim entitled
‘~oundary Conditions.”

Solution of Mod3fied Equation by Gelerkin Me&od

An approximate method of solving vibration and buckling problems
closely paralleling that of Ritz was inbticed in 1915 by Galerkti.
(See, for example, references 12 and 13. ) The main distinction between
the Ritz .andGalerkin methods is that the Ritz method be#ns with an
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.

energy expression whereas the GaJ.erkinmethod begins with an
equation of equilibrium. The Galerk3.nmethod is readily @.aptable
to the solution of equation (6) and is now desoribed briefly.

Let the equation of equilibriumbe written

Q(w) +p=o (7)

where p Is lateral pressure end, Q is some operator in x and y
which for the purposes of this paper is taliento be linear. According
to the Ga3.erkinmethod, the equation may be eolved by exyandimg
the unluwwn function w in terms of a suitable set of functions
fi(x)6J(Y)> each of which satisfies the boundary conditions but
not in general the equation of eqtiilib~ium:- ‘-

(8) -

Substitution of this expression fcr w into equation (7) gives
the following equation:

—

.

.

Because the fumtions f~(x)gj(y) were chosen to satisfy the

boundary conditions rather than the equation of equil~brlum,
equation (9) cannot, in general, be satisfied identically by any
choice of the coefficients ai~. These coefficients can be chosen,
however, to assure the vanishin

7
of certain weighted.ay.eraggsOf

the left-hand Bide of equation 9). The weighting functions used
in the Galerkin method me the original expansion functions, so
that the following simultaneous equations for determining the
coefficients ai.j are obtained:

(In=l,2,3, . . . . n=l,2,3, . ..)

r
.



I

.

.

NACA TN No. 1342

where

%,,=/[ { } (1:fm(x)~(y) Q~i(x)gj(yfl + p & @

The simultaneous set of linear algebraic equations in the unknown
coefficients aij (equation (10)), obtained by using the original

—

expansion functions as weighting functions, is ordinarily the same
set which would be found by the Ritz method, f? the same series
expansion for w were used. A solution of any desired degree of
accuracy may therefore be obtained by the Werkin method.

In applying the Galerkin method to equation (6) by use of
Fourier series expansion for w, expressions of the type

V 4 ~- >— aij”ein ~ sin *

i j-

must be evaluated. -4The operator V , the inverse of V4,
simply introduces into the denominator of each term of the series
the expression that comes into the numerator if V4
Thue,

This result may readily be verified by applying the
to each side of equatdon (12).

is applied. -

In writing equation (1.2)the quantity V-4f, as definedby
the equation

v4v-4f .-f

~ sin ~ (12)

operator 74
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was taxi W -s-d tobe ~fwe ● The quantity actually is not
unique; any number of terms which vanish when oyerated UIXXIby V 4

could be added to the ri@t+La~d side of equation (12). The
omission of such terms makes the present analysis parallel to the
analysis using Donnell’s equation (see reference 1) and Implles
certain boundary conditions on u and VS which are discussed
in a subsequent section entitled “Boundary Conditions.”,

Deflection Functions

Simply suyported edges.-Fcr simply supported cylindrical
shell~~ thc following series expansions for w may be used tO
re~resent the buckle deformation to any destred degree of accuracy
(in these functions, x is the coordinate in the axial direction

-.
1
I

,

the coordinate in the cinmmfersntial direction):

Rectangular curved plate (axial dimension a and
circumferential dinnnslon h)

$-~
w=~ / ~sinm~sin~

.—

(13)
m=l n=l

.

Curved strip long in the axial.direction (circtierential
width b and axial wave length 2X)

.

(a) Direct stresses only

m

(14)w.sfnGK T
h<

am f3in~

m.1

(b) Shear stress wfth or without addition of direot
stress

m w
\— -—

.

.
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(3) Complete cylinder
length 2X)

(length L and

(a) Direct stresses only
m

w= sin = T
~fi%?ls~n

=

circumferential.

rmtx

-r

13.

wave

(16)

(b) Shear stress with or without addition of direct
stress

@roped edges.- Wobably the simplest mthod of treating
cylindrical shel1s with clamped edges is to employ the-e~ansions
in equations (13) to (17) modified by substituting functions of the
type

wherever functtons of the type sin ‘& appear, with a similar

substitution for functions of y (all terms involving sumuation
subscripts m and n are thus changed; terms involving &

suoh as sin ~, remain unchanged). The functions ~(x) form

a oomplete set so thatfinite expansions for w of the typ suggested
for shells with ulamped edges as well as those for she14 with simply
su~orted edges may be used to represent the buckle defamation
to any desired degree of accuracy.

Boundary Conditions

. Simply supported e@es.- Appendix D of reference 1 shows that,
. if the buckling stress of a simply supported shell is found by means

of the expansions for w given in the preoeding section entitled
. “Deflection Function,” the boundary or e~e conditions implied for
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the wxti.an-surfacedisplacements u and v are zero displacemmt
along each of the ed~s of a cylinder or cumed pens1 and free
displace?mnt normal to each edge. (Although the proof given used

.

.

eqtition (4), the proof could.equa~ well have
equation (6). )

The boundary conditions for simpL9 su?port

been based on

w thus be written,

(19)

at a curved ed&- (x = constant),
. .

=0..

=0

w=

and, at a stral@t edge (y

w.

= constant),

#w ~2F
—=u=—
ay~ &2

(20)

Clamped edfws.- By a method similar
of reference 1, solutions usfn~ the functions su~stid in the

to that in appendix D

preceding sect~on for the treatment of clam~d ed~s c-sinbe shown
to correspond to the boundary conditions - zero displacement normal - .

to an ed~ and free displacement

The boundary conditims for
at a curved edge (x = constant),

along m ed&a.

.
therefore becom3,

(21)a=-)~=2=~=ax2
and, at a straQht ed~ (Y = constit),

a-w %F ~
‘=&=v=a~” —

(22)
.-

the boundary condi.tionsDiscussion.- As i~ntiowd in reference 1,
im@ied for u and v in the case of simply supported edges are

bounded hy light bulkheads or
their own planes but may be

●

....- - @_

ap~ropriate for cylinders or panels
deep stiffeners, which are stiff in
readily warped.out of their ylanes.

..... . ___
,

r .
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The boundary conditione on u and v appropriate for a
clamped edge would seem to be zero displacemimt normal to the edge
and zero, rather than free, displacement along the edge. Comparison
of critical stresses for shells with clamped edges found by the
~thod in the present paper with critical stresses found by the
method in references 9 ad 14, giving boundary conditions u = v = 0,
however, i.ndtcatesthat the imposition of the added requirement
of zero displacement along the edge ordinarily has very little
effect

A
shells

on the critical stresses.

less satisfactory method for solv~mg problems concerting
with clamped edges involves the use of functions of the type

J?8@lp.

instead of those described by

~ti (m + 2)Ycf
lEiiT a

equation (18). DI this method, the
functions used em theme for-si@l.e sup~ort taken in such co&binathns
that the edge slope is zero. U& of such functions leads to the
same boundary condLtlons on u and v as were described for simply
supported edges; at the e@e y = consixuxt,for exam@e ~ the loundary
conditions becoim

The use of these functions to represent shells
is not recommended, however, for the followlng

(23}

with claqmd edgps
reasons: The associs50d

boundary condition& seem to-he artificial sad um.2ikelyto be reproduced
even approximately ti actual construction; the mthod lsads in so’m
oases to solutions that diffen considerably from the solution for
ideal clamped-edge conditions W which u = v = O; and the solutions
obtained generally converge rather poorly.

APPLICATIONS AND DISCUSSION

Among the more clifficult shell-stability problems to treat
theoretically are those which involve shear stiesses. In fact,
until 1934, when DonnellFs paper on critical shear stress of a
cylfnder in torsion was publiphed (reference U_), such proldfnns.
were generally re@rded as impracticable to solve. W order to
illustrate the type of solution to be found by the method of analysis
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just outlined and the effect of boun&ury conditions on critical
stresses, the remits obtained for a mmiber of shell stability
problems involving shear stresses are reproduced and diemssed
briefly here. The problems treated are sgrized in table 1.

Q?itical shear stress of 1- curved strip.- The critical
shear stress for a low plats with transverse curvature is @v6n
by the equation

where ~ is a di.mensionledscoefficient, the value of which
depends upon the dimensions of the strip, Poisson’s ratio for
the material, and the type of edge support. In figure 1 (fig. 1
of reference 2) the shear-stress coefficient k8 is given for
plates with simply supported ewes and with clamped e~es. This
solution for simply suyported edge~ coincides with that givan by
Kronm (reference 1~).

As indicated in the previous section entitled ‘boundary
Ccnditkms, “ We solution corresponding to the boundary condltias
of equation (23) (dashed curve of fi~. 1) is yoorly convergent and
deviates appreciably from the results for completely fixed e&gea.
Figure 1 shows this poor conver~ence in the limiting case of a flat
plate, for which the critical stress is independent of boundary
conditions on u and v. Even a tenth-order determinant led to
a result that is 7 percent above the true soluttom, whereas the
result ustnc a fourth-order determinant obtained with the deflection
functions r~commended for clamped edges is only 1 ‘percentabove.

In figure 2 (fi~. 2.of reference 2) the solutions given in
figure 1 are compared with the results Given by Le~ett (reference
for simply supported and clamped edges with u = v = O at each
edge. Throughout the range for which they are given, Leg~ett’s
results for clamped edges differ only slightly from those of the
present pa-per. On tie other hand, the ~eviouely mentioned
discrepancy between the results for completely fixed edges

9)

(U=v = O) and those for the boundary conditions of equation (23)
(dashed curve) may be inferred from this fi~ure to he ccmsiderable
for large values of Z. A minimum measure of this discrepancy is
the distance between the clamped-edge curves for v = O and for
u = O in figure 2, since Leggett’s curve must alwayslie above the
curve for v = O.

The reason for the merked tncreaee unbuckling stress of simply
supported curved strips when
circumferentialdisplacement

P

the edges axe restrained agatist
during buckling is discussed in reference 2.

.

I

I

.

.
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@itical shear stress of oylinder In torsime - The critical
shear stzressof a cylinder subjec’wd tot’orsion is given by the
equatim

1$

%D
T
Cr = k=L~

In figure 3 (fig. 1 of reference 3) the values of ks are given
for cylinders with simp~ supported edges (boundary conditions
of equation (19)) and cylinders with clsmpd e~es (boundary
conditions of equation (21)). At hi@ values of Z, the values
of ks for thick cylinders are given by special curves for various

values of t -S as discwsea in reference 1. At values

of Z greater than about 100 only a emll increase unbuckling
stress is caused by clamping the edges. The results indicated
in figure 3 me in very close agreement with Donnell’s results for
the ssme problem, except in the range 5 < Z < ~0 wheye the
somewhat lower curves of tie ~esent paper represent a more accurate
solution.

Reference 1 shows that boundary conditions imposed uyon u
and v at the curved edges of a panel or cylinder have an edmmt
insi~lfiaunt effect on tie buclcl~ stresses, whereas conditions
imposed on v at the straight ed~s may be quite important.
Comparison of figure 1, in which boundary conditions on straight
edges are considered, with fi@re 3, in which conditions m curved
edges are considered, indicates that a similar situation exists
with respect to restraint ~inst edge rotatim.

Critical shear stress of curved panel.- The values of k~
giving the critical.shear stresses of simply supported curved
rectangrd.aypanels are given in figures k and ~ (figs. 1 and 2,
respectively,of reference 4). The correspondin~ boundary conditimm
on u and v are zero displacement parallel to the edges and free
-ping normal to the edges. Figure 4 indicates What as tie
curvature parmeter Z increases, the critical shea& sla?essesof
panels.having a circumferential dimension greater than the
axial dimension approach those for a cylinder. Figure 5 tidicates
that, as.the curvature parameter Z increases, the critical shear
stresses for ~els having an axial dimension gre8ter than the
circumferential dimension devtate more end more from the critical
shear stress for an inftiitely long curved plate. Reference 4
shows that the reason for this deviation in figure 5 is that at
high curvatures the bucklin~ stresses of these panels, as well as
those of figure 4, approach those of the cylinder obtainedby
extending the circumferential dimensions of the panels.

-.
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The effects of hound=y conditions in
infinitely low cumed strips (fi~. 1] and
(fig. 3) s~est that the curves of fi~e

NACA ~tiO. 1342

the limlting case8 of
of complete cyltnders
h are substantially

independent of ed&w restraint at large--val~+xmof Z but that-the
curves of figure ~ would be considerably affected by a chan~ in
edge restraint.

Long curved strips under combined shear and direct axial stress.
Reference 5 shows that the theor~i=a~nteraction curve fbr a
long curved strip under cabined shear stress and direct axial stress
is approximately parabolic when the ewes are either simply supported
or clamped, regardless of the value of. Z. This parabola Is @ven
by the formula

R~2+Rx=l

where Rs and Rx are the shear-slawus
ratios, respectively.

end compressive-stress

At hi@ values of Z curved strlp~ like cylinders, buckle
at compressive stresses considerabfi~below the theoretical critical
stresses. In order ‘d take this condition lab account, ccrtati
modifications m. the theoretical results are proposed in reference ~
for use In desi~.

Cylinders under cotiined shear and direct exlal stress.-
The theoretically determined combination of shear stress &nd direct
axial stress which cause a cylinder with simply supported end
clamped e~es to buckle are shcm in f@ure 6 (fig. 1 of reference 6).
Considerable variation in the shape of the interaction curves
occurs for low values of Z. For hi~h values of Z the interaction
curves for either simply supported or clamped edges are slml.larto
the curve for Z = 30.

Because cylinders actually buckle at a small fraction of their
theoretical critical compressive stress, the theoretical Interaction
curves of figure 6 cmnot be expected to be in satisfactory agreement
with experiment when a very appreciable amount of compressim is
present. For semien@rical curves and a check of available test
data: see reference 6.

.
I

.

iI

.

.

r
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CONCLUDING REMKRE3

A previous investigation showed how Fourier series type
solutions of Donnell’s equation can he used to simplify greatly
the stability analysis of thin cylindrical shells with simply
supported edges. The present paper shows that the restriction to
simply supported edges &m be rerdoved.by the introduction of a
new equation which is equimdent to Donnell ‘a equation but is better
adapted to solution %T Fourier series. ~is nmdif’iedequation @m
he solved for the buckling stresses of curved sheet having either
simply supported or c~ed edges by established methods essentially
equivalent to those in use for flat sheet. This approach permi-M
a simple and strai~tfoznm?d solution to be given for a mmber of
problems ~reviously considered rather formidable.

Lan@ey Msmorial Aeronautical Laboratory
National Advisory Cotittee for Aeronautics

Langley Field, Vs., March 20, 1947
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APPENDIX

COMPARISON OF RESULTS C16TYCCNEDBY USING IX)NNXLL‘SEQUATION

AND THE MODIFIEZ EQUATION IN THE STABILITY ANALYSIS

OF SIMPLY SUPPORTED CURVED PANEIS

Solution of Donnollts Equation

Donnell’s equation expressing the equilibrium of a curved
panel under median-surface stressee can b,ewritten in @meral form

where x is the axial coordjnab and y the
coordinate, Division of equation (Al) by II

circumferential
and the introduction..-

of the dimensionless stress coefficients kx, ky) and ks, and
the curvature parameter Z results in the followina equation:

where

b%
%X = ~xfiTD

m

,

.

1 ,
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F~uation (A2) oan be represented by

Ql(w) = ~

where Q1 is defined as the operator

19

(A3)

..7

The equation of equilibrium (equation (A3)) is solved bY using
the Galerkin mthcd as desoribed in the section entitled ‘~heory.”
In applying this method the unknown deflection w is represented in
terms of a set of functions (see equaticn (8)), each of which. .
satisfies the boundary conditions jut not fi-
equilibrimu. A suitable set of flznotionsof
satisfies the boundary conditions for simple

where the origin is taken at a oorner of the
Ln equations (10) and (11)

@nsral the equation of
thiS t~~ , which
support, is

(A4}

plate●’ Substituting

fro(x)= sin%

%(Y) = sin y

Q=Q1

and perfoming the integration over the
Y = 0, b) 8ives the 8et of equations

whole plate (limits x = 0, a;
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w w

FE
,.—.—..

.-”

( )‘=22

+ 32k~ a3
p’ -1-q @ Im-kpq

—— (A5)
‘q (m2 - &)(n2 - q2)

— —— =0
X’ b3

p:i q=

where m=l,2,3, .,., ~=1:2,3,
values for which m t ,p and

. . . . and p and q take onl.ythose
ntp are odd numbers,

—

an infinite set of hoiIKIgeneouslinesrEquation (A5) rep-’sents
equationa involving the unknowu deflection coefficients aitj. In .

order for the deflection coefficients to have values other than
zero, that is, in order for th8”panel to buckle, f.hedetimninent of 1
the coefficients 01 theunknown deflecti.oncoefficient.s alj

-J

must vanish. This determinant C8n be factored into two subdaimminmts,
one involving the unkncwn deflection coefficients ~J for which

i * J is odd and the other involvi~ those coefficients for which
i * J is even. Buckling occurs, therafore, when either of the two
subdetsrminente vanishes. Only the buckling criterion involving
the even subdekmminant is treated here, This crltiriou i%

I

1

1

1

i

.

.

b
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ml, n=s

m=2, n=2

m=3, n=l

m=3, n=3

.

.

.

o

a13 %3 . . .

o .*

. .

‘Wr-%%$)n’f=-$&3%@’’+Y**

. . .

. . .

. . .

where

~2b3 ‘ -

~=33 1(

~2m2+n2_
J

* 12z%4a4
~2 k#@@-

J

~2
~- +n2-

ba
..

( J]-9@n2+n2$

Division of each column of the determinant in equation (A6)
by the proper

s o (A6)
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gives

RACA TN No. 13@

the sim@ified equation

‘+5 ~4%T~(!%v‘3’(?+$7“+%3““*
’11 0 +4 o 0

9
. . .

0 N13 -.
;

o 0 ,..

+4 -; N22
4--

5 5
+L6 .*,

25

0 0 4-- N31 0 . . .
5“’”

0 0 ~3~ 0 N33 :..
25

. . ● , .

# . . , .

. . . ● .

I
I

where

=0

(A7)

1

,
.

I
I

.

I

The vanishing of’this determinant* is the criterion for the symmetrical
holding of the uhell. The same buckllng criterion results frmn
the use of the modified equabion, as is shown.in the followlng
section.

Solution of Modified Equation

The modified equatian eqressing the equililn?iumof a curvwd
panel under mdim-surfaoe streeaes b general form is ..

1

i ,
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.

x

.

.

Division of equation (A8) W D and
gives the following equatiun:

simplification of the result—

Equation (A9) can be represented by

~(w) = o

where ~ is defined as the operator

(A1O)

.—

By use of the GalerLtinBthod and by use of the expression for w
given in equation (A4)j the following set of equations analogous
to equations (A5) are ohtedned
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As In the case of the solution of Donnell’s equation, the
stability determinant represonting equations (AH.) can be factored
into an even and an odd subdeterminant. The even one is

nl=l, n=l

m=l, rl=3

nl=2 ~ n%2

nl=3 , I-d

m=~, 11=3

.

●

.

I

%1

’11

0

+45

0

0

.

.

.

%3

o

%3

4-.
5

0

0

.

.

.

a31

0

0

k-.
5

N31

0

●

.

.

a33

0

0

36
‘2T

0

N33

.

●

.

.0.

. . .

,.,

. . .

. . .

. . .

=0 (AK!)

The stability determinant (equation (A12)) obtained from the
mcxlffiedeqmtion is identical wi& the simpl~~ied stability
determinant (equation (A7)) obtained by use of Donmll’s equation.
This identity hold~ for the odd as wall ae the”even determinants.

Although the stabtlity determinants obtained by use of the two
equations are identical.and yield Identical %uckling loads, the
determinant in equation (A7) consists of the coeffici.entsof

“JP + ‘2$Y~
whereas”‘&e determinant in equation (A12)

consists of the coefffcients of al~. Accordingly, although the
buckling loads found ly the two methods are the sam ~ the buckle
patterns are different. Of the two buckle patterns the one found
by the use of the modified equation Is believed to %e correct.
This conclusion has been verified for the li.mltingcase of a
flat -plate (2=0).

●

-,

r

i
1

,
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Fi@re 1.- Critical-shear-stresscoefficientsfor a long curved strip.
(Fig.1 of reference 2.)
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Figure 2.- Comparison of LeggetPs solutionswith present solutionsfor
critical-shear-stresscoefficientsof a long curved strip. (Fig.2 of
reference 2.)
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Figure 3.-

1

CriticsI-shear-stresscoefficientsfor cylindersin torsion,
(Fig.1 of reference 3.)
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Figure 4.- Critical-shear-stresscoefficientsfor simply supported
curved panels having circumferentialdimension greater than axial

dimensiom (F@ 1 of reference 4.)
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Figure 5.- Critical-shear-stresscoefficientsof simply supported

curved panels having axialdimension greater than circumferential
dimensiom (Dashed curve’estimated.) (Fig.2 of reference 4.)
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Figure 6.- Critical
stress coefficients for cylinders. (Fig. 1 of reference 6.)
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